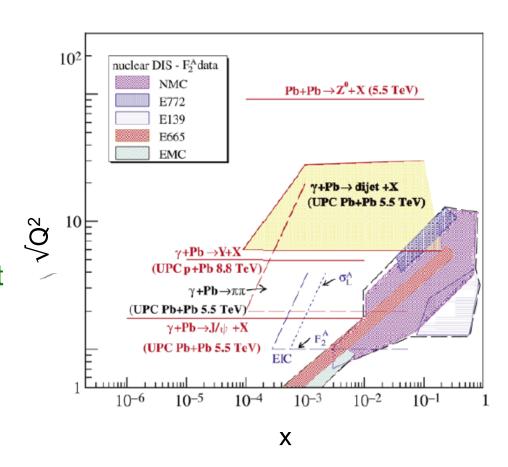
Vector meson production in UPCs and the eSTARlight Monte Carlo


Spencer Klein, LBNL

Presented at the workshop on "Next-generation GPD studies with exclusive meson production at EIC"

- Photoproduction at UPCs and at an EIC
- Shape evolution in gold nuclei with Q²
- The eSTARlight Monte Carlo
 - Current Status
 - Future plans
- Conclusions

UPCs & an EIC are complementary

- UPCs at the LHC is and will be the energy frontier for photoproduction studies
 - \bullet Down to x ~ 10⁻⁶
 - $Q^2 = M_V^2 + p_T^2$
 - Correlated with p_T
 - → t and Q² not quite independent
- EIC is the intensity frontier
 - ◆ Independent Q² measurement via outgoing electron
 - Multi-dimensional binning, precision studies and other event-hungry analyses

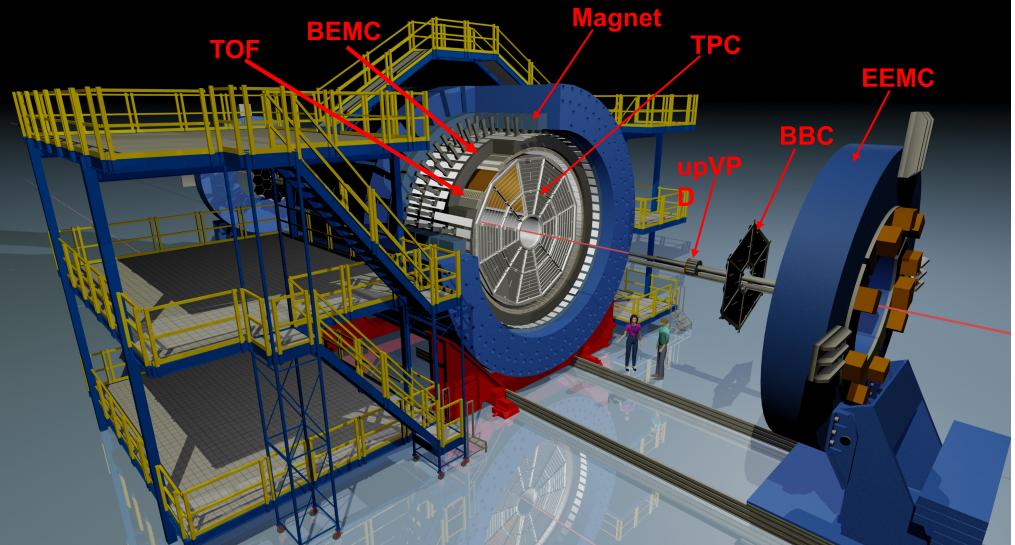
UPCs with large data samples

- UPCs do offer large γA integrated luminosity
 - With an appropriate trigger, large samples can be collected
 - → ~ 10⁶ events for light mesons
 - → HL-LHC could reach > 10⁵ ccbar mesons
- UPCs do not offer good control of Q²
- But, can use $Q^2 = M_V^2 + p_T^2 \sim M_V^2$ to scan in Q^2
 - ◆ Not quite, since p_{longitudinal} depends on M_V, but close
- Today: one STAR analysis in this direction:
 - ◆ Study evolution of nuclear shape with increasing Q2
 - ♦ dσ_{coherent} /dt gives nuclear shape, through Fourier transform

Thanks to Ramiro Debbe, Thomas Ullrich and Markus Diehl for developing the Fourier transform technique.

Nucleon shadowing of dipoles

- A photon fluctuates to a $q\bar{q}$ dipole which then scatters elastically from the nucleus, emerging as (for today) a ρ^0 or $\pi\pi$
 - ω -> $\pi\pi$ also contributes, mostly through interference
- Large dipoles (small $M_{\pi\pi}$) interact on the front of the nucleus
 - "Black disk limit"
 - Multiple interactions from one dipole
- Small dipoles (high $M_{\pi\pi}$) penetrate more deeply and see internal nucleons
 - Woods-Saxon distribution
- Dipole size most important near b=0
 - ◆ Shadowing changes effective shape of nucleus
- ρ^0 + $\pi\pi$ photoproduction too low in Q² for pQCD
- Nucleon shadowing affects dσ/dt

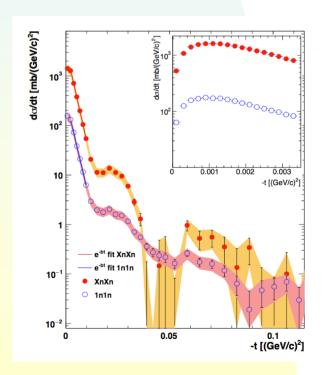

From do/dt to nuclear density profiles

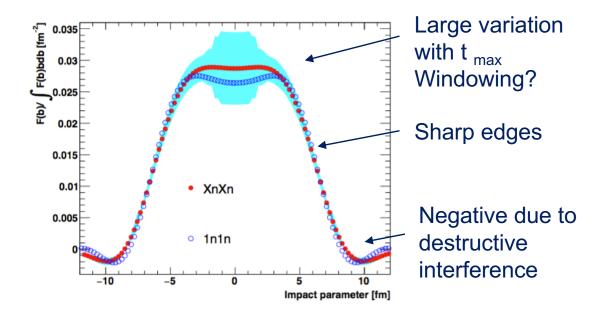
- For coherent production in low-density targets
 - \bullet $\sigma = |\Sigma_i A_i \exp(ikx_i)|^2$
 - → A_i, x_i are nucleon interaction amplitudes and positions
 - The interaction sites differ for the low- $M_{\pi\pi}$ and high $M_{\pi\pi}$ cases
- $d\sigma/dt$ ($t=p_T^2+p_{||}^2$) depends on the shape of the nucleons
 - ◆ p_{II} is negligible here, and will be neglected
- Fourier transform of dσ/dt gives nuclear density profile

$$F(b) \propto rac{1}{2\pi} \int_0^\infty dp_T p_T J_0(bp_T) \sqrt{rac{d\sigma}{dt}}$$
 * = flips sign after each minimum

- ◆ In data, there is an upper limit to t -> windowing problems
- Gives the two-dimensional (traverse) distribution of interaction sites within the nuclear target
 - Changes with dipole size/M_{ππ}/reaction Q²

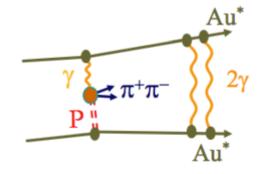
The Solenoid Tracker At RHIC (STAR)




Detectors for |y| < 1 - TPC, time-of-flight system, EM Calorimeter Zero degree calorimeters at large |y|

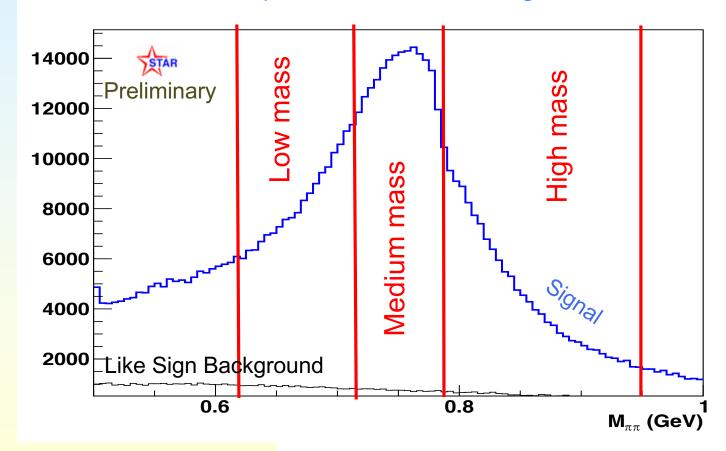
Beam-Beam Counters veto events w/ charged particles in 2 < |y|<5

Previous STAR analysis


- **294**,000 photoproduced $\pi\pi$ pairs
 - Tight cuts to minimize background
 - $M_{\pi\pi}$ spectrum well fit to ρ^0 + direct $\pi\pi$ + ω -> $\pi\pi$ cocktail
- $d\sigma_{coherent}/dt = d\sigma_{total}/dt d\sigma_{incoherent}/dt$
- $d\sigma_{incoherent}/dt$ found at larger |t|, where $d\sigma_{coherent}/dt$ is small
 - ◆ Fit to a dipole form factor, and extrapolate to small |t|

The current analysis

- Similar approach as in 2017 STAR paper
- Uses 2 years of data (2010 and 2011)


- Divide $M_{\pi\pi}$ spectrum into 3 mass bins, with similar number of events
- See how $d\sigma_{coherent}/dt$ and F(b) vary with $M_{\pi\pi}$ range
 - ♦ How does the apparent nuclear shape vary with dipole size
 - Look for evidence of nuclear shadowing
- STAR 'minimum bias UPC trigger'
 - ◆ Low multiplicity + neutrons in both ZDCs
- \blacksquare $\pi\pi$ photoproduction + mutual Coulomb exchange
 - ◆ Three-photon exchange
 - \bullet One to produce the $\pi\pi$, one to excite each nucleus
 - ◆ Good control of impact parameter (photon p_T spectrum)
- **Reconstruction efficiency is independent of** $\pi\pi$ p_T

Data set and cuts

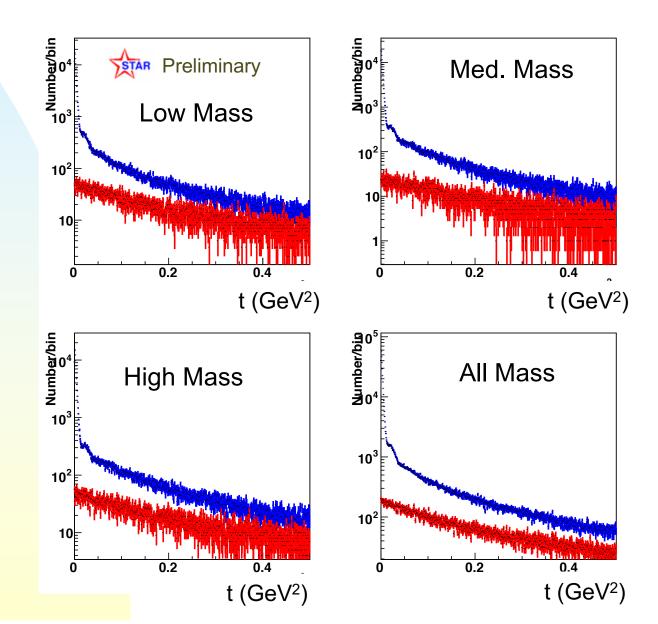
- Trigger: 2-6 tracks with |y|<1 and 1-4 neutrons in each ZDC</p>
- Select $\pi\pi$ pairs coming from a single vertex with tight cuts
 - |Z_{vtx}|< 50 cm
 - ♦ $|Y_{\pi\pi}|$ > 0.04 (removes cosmic-ray muons)
 - ◆ Each track must have at least 25 space points
 - ◆ N_{primary tracks} = 2
- Mass Cut: $0.62 \text{ GeV} < M_{\pi\pi} < 0.95 \text{ GeV}$
- Backgrounds:
 - $M_{\pi\pi}$ > 0.62 GeV removes most $\gamma A->\omega->\pi^+\pi^-\pi^0$ and $\gamma\gamma->ee$
 - → N(ππ from ω-> π⁺ π⁻ π⁰)/N(ππ from ρ) ~ 0.05%
 - For $M_{\pi\pi} > 0.62$ GeV, $\pi^+\pi^-$ from ω are at low p_T ,
 - Similar p_T as most ρ + direct $\pi\pi$ -> not a problem
 - ◆ Like sign pairs represent the hadronic background
 - → Signal: like-sign background ratio > 10:1 in the coherent region

The $\pi\pi$ mass spectrum

- **Divide** $M_{\pi\pi}$ spectrum into three bins
 - Similar numbers of events in each range
 - Look at dσ/dt spectrum in each region

Very few like sign pairs -> very little hadronic background

Q² bins

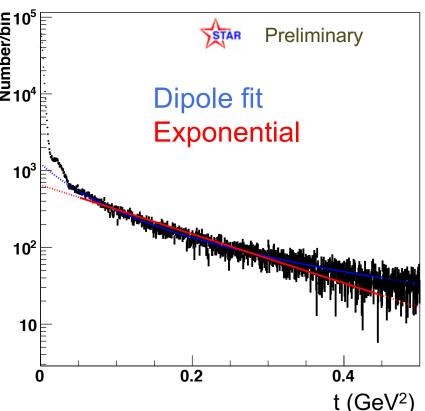

Mass Range	<q<sup>2></q<sup>	N _{events} (Net)
0.62-0.72 GeV/c ²	~0.45 (GeV/c) ²	149K
0.72-0.78 GeV/c ²	~0.56 (GeV/c) ²	148K
0.78-0.95 GeV/c ²	~0.7 (GeV/c) ²	140K
0.62-0.95 GeV/c ²		437K

Net = after background subtraction

Unfortunately, a somewhat limited lever arm

Like-sign background subtraction

Tight cuts lead to signal:noise ratio > 10:1 in coherent region

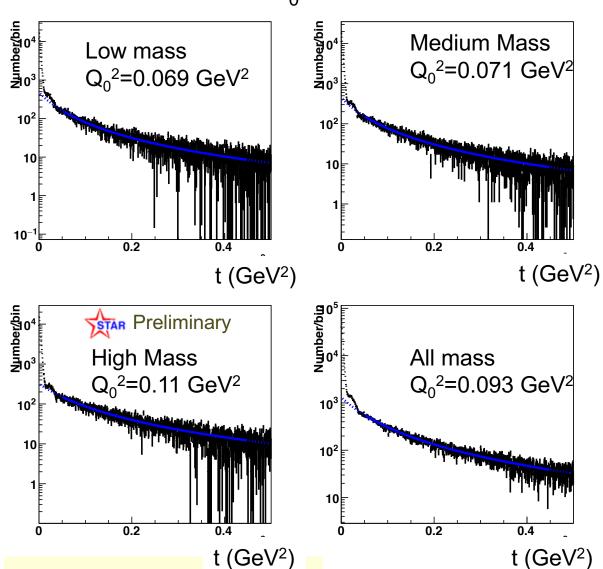


Signal

Like sign BG

Incoherent fitting

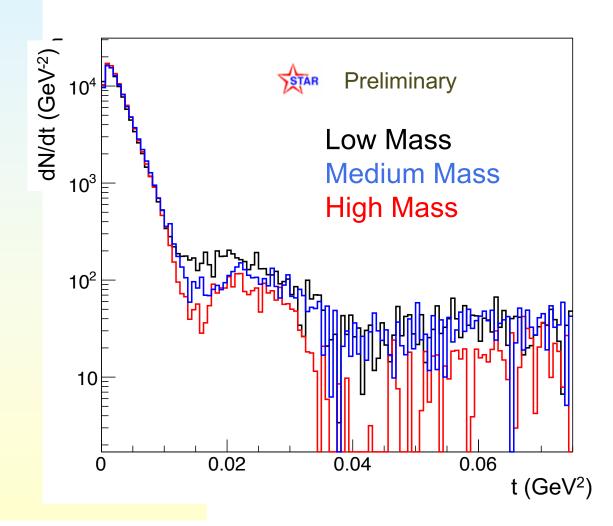
- do_{incoherent}/dt fit to a dipole form factor
 - ◆ Q₀²=0.099 GeV² from STAR paper
- Fit in range 0.05< t < 0.45 GeV²</p>
 - Wider than in the STAR paper
 - Minimize statistical uncertainty & distance for extrapolation
- $\chi^2/DOF = 659/639 -> OK$
- Why not an exponential?
 - Poor fit to data
 χ²/DOF 1345/639
- Results similar to those in the STAR paper



 $\frac{d\sigma}{dt} = \frac{A/Q_0^2}{(1+|t|/Q_0^2)^2}$

Incoherent fitting in $M_{\pi\pi}$ bins

Let Q₀ float

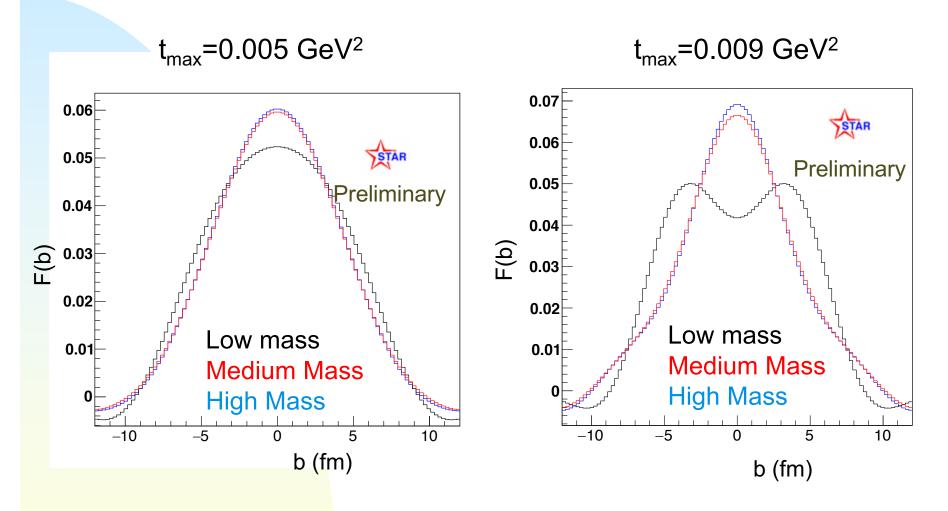


Sample	Q_0
Low	0.2626 ± 0.0045 GeV
Medium	$0.2687 \pm 0.0039 \mathrm{GeV}$
High	0.3299 ± 0.0046 GeV
All	$0.3050 \pm 0.0024 \text{ GeV}$

All fits have: $\chi^2/DOF \sim 1$ & Q_0^2 is insensitive to loosening of cuts Higher $M_{\pi\pi}$ -> higher Q_0^2 -> may be reflective of smaller dipole


Coherent do/dt

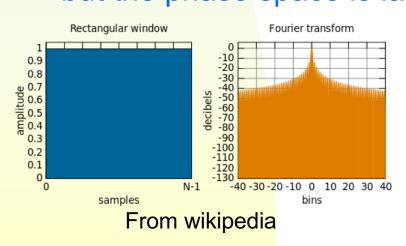
- Subtract fitted incoherent contribution
- Normalize to the same number of events/ $M_{\pi\pi}$ bin

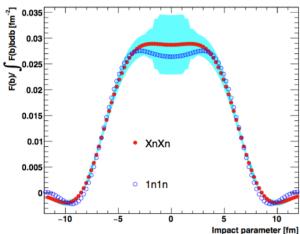


Transforming to F(b)

- Use t_{max}=0.006 GeV² for baseline to match the STAR paper
 - Below first minima: avoids uncertainties in dip positions
 - ◆ Vary t_{max} as a systematic error
- Normalize F(b) to the same area.
- Clear shape differences -> low mass has a flat-top, as expected in shadowing models

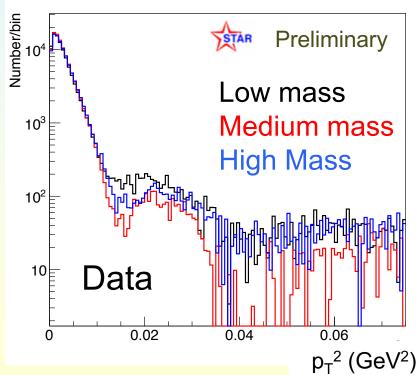
Effect of changing t_{max}

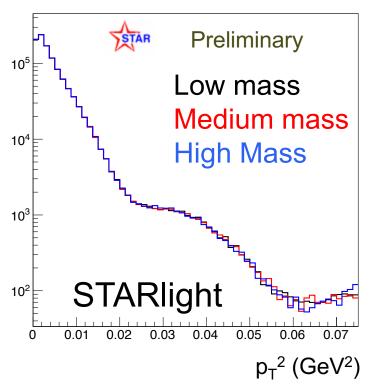



Variation with t_{max}, due to windowing
Especially for the low-mass curve
However, the trend does not vary with t_{max}
The low-mass distribution is always wider than the others, etc.

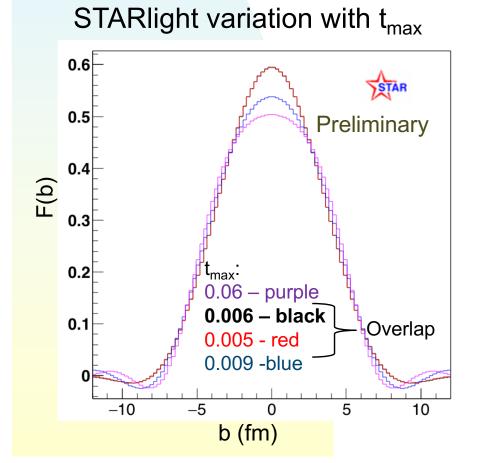
t_{max} sensitivity and windowing

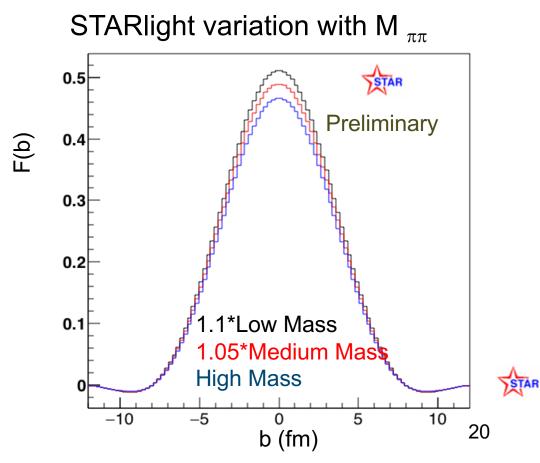
- Fourier transforms assume integration over the full t range
 - ◆ The data have a finite range, so we need to choose t_{max} below the noise-dominated region.
- Input is dσ/dt times a square window from 0 to t_{max}
 - → -> Output is the convolution of the two transforms
- The biggest impact is in the region around 1/t_{max} -> small b
 - ◆ Change t_{max} -> change result at small b


◆ This might be alleviated with a different windowing function, but the phase space is large.



STARlight simulations


- In STARlight, $\sigma_{\text{dipole-nucleon}}$ does not vary with $M_{\pi\pi}$
- It handles the event kinematics & photon p_T well
 - Good agreement with data, except for nuclear slope
 - ◆ A good "null experiment"
- STARlight d σ /dt coherent shows no variation with $M_{\pi\pi}$



STARlight F(b)

- STARlight F(b) shows significant variation in shape with t_{max},
 - Similar to data
- lacksquare STARlight shows no variation in F(b) with varying M $_{\pi\pi}$
 - ◆ The curves below are scaled so you can see them all

Systematic Uncertainties

- The uncertainties in the determination of the nuclear shape are dominated by the choice of t_{max} and windowing function.
 - ◆ A hard cut on t_{max} is a windowing function
- Other systematic uncertainties
 - Incoherent dσ/dt subtraction
 - Variation of the fit range leads to small changes in dσ/dt_{coherent} & F(b)
 - → Small; slow variation with t -> is only important at small |b|
 - ◆ Backgrounds
 - Variation in cuts leads to variation in signal to noise ratio, but only small changes in dσ/dt_{coherent} & F(b)
- The data are a mixture of interfering ρ^0 , direct $\pi\pi$ and $\omega->\pi\pi$. We assume that these have the same relationship between $M_{\pi\pi}$ and dipole size.
- We do not account for the photon p_T here.

From UPCs to an EIC

- By the time the EIC sees first light, we will have good data on vector meson photoproduction cross-sections at a wide range of energies.
- EIC will be able to focus on more data-hungry analyses, and those requiring precise control of Q², like measuring the spatial dependence of shadowing.
- With an EIC:
 - ◆ Scan in Q² with M_V fixed
 - Higher statistics allow multi-dimensional binning
 - Trigger and analyze for exclusive $\pi\pi$, without nuclear excitation from the $\pi\pi$ -producing photon or additional photon exchange
 - N. b. EIC is not 100% efficient at separating coherent and incoherent events
 - Nuclear excitation in an independent reaction
 - Missing photons from nuclear de-excitation
 - ◆ Larger reach in t -> better Fourier transform

eSTARlight

- Monte Carlo for photoproduction and electroproduction of vector mesons at an EIC
 - ◆ Here, photoproduction is Q² < 1 GeV², while electroproduction is Q²>1 GeV²
- Physics model follows STARlight UPC event generator, but covers photons with arbitrary Q²
- A fast, complete, reasonably accurate model of vector meson production, not a sophisticated theoretical calculation
 - For detector simulations....
 - ♦ Electron (or positron) -> γ^* -> vector meson -> final state
 - ♦ Vector meson polarization and decay angular distribution
 - ◆ Based on data where possible, phenomenology elsewhere
 - *Some extrapolations required
- Designed to be easily extensible

Initial states

- Electron (or positron)
- Protons
- Light ions (Z<7) are modelled with a Gaussian distribution</p>
- Heavy ions are modelled with a Woods-Saxon distribution
- For protons, lead, gold, zirconium, ruthenium, xenon or copper parameters are from electron scattering data
 - No neutron halo
- For other nuclei, radii are determined from simple formulae
- Nuclear properties are easy to change if desired
- Arbitrary beam energies...

Final states

- ρ , ω , ϕ , ρ ' (i. e. $\pi\pi\pi\pi$), ρ + direct $\pi\pi$, with interference
 - ◆ Simple states decayed in STARlight
 - ◆ Complex final states via PYTHIA interface
 - ◆ Easily extensible
- Incoherent photonuclear interactions w/ DPMJET
 - ◆ Real photon approximation
- eSTARlight tracks outgoing electron & proton/nucleon
- eSTARlight outputs photon 4-vector

Electronuclear interactions

$$\sigma(e+X\to e+X+V.M.) = \int dQ^2 \int dE_{\gamma} \frac{dN_{\gamma}(E_{\gamma},Q^2)}{dE_{\gamma}dQ^2} \sigma_{\gamma X}(W,Q^2)$$

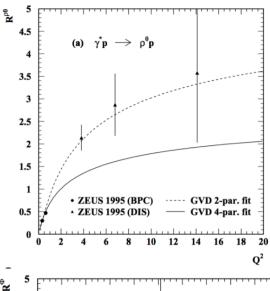
- Convolution of photon flux from electron with cross-section; both depend on Q²
- Photon flux depends on virtuality

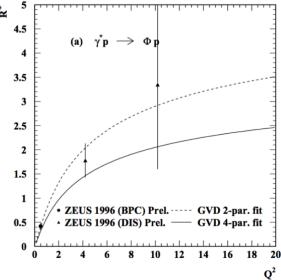
$$\begin{split} \frac{d^2N}{d(Q^2)dE_{\gamma}} = & \frac{\alpha}{\pi} \frac{1}{E_{\gamma}|Q^2|} \left[1 - \frac{E_{\gamma}}{E_e} + \frac{1}{2} \left(\frac{E_{\gamma}}{E_e} \right)^2 - \right. \\ & \left. \left(1 - \frac{E_{\gamma}}{E_e} \right) \left| \frac{Q_{min}^2}{Q^2} \right| \right] \end{split}$$

Cross-sections

Parameterized from HERA data

$$\sigma_{\gamma p} = \left(\frac{1}{1 + Q^2/M_v^2}\right)^n \sigma_{\gamma p}(W) \quad \sigma_{\gamma p}(W) = \sigma_P \cdot W^{\epsilon} + \sigma_M \cdot W^{\eta}$$

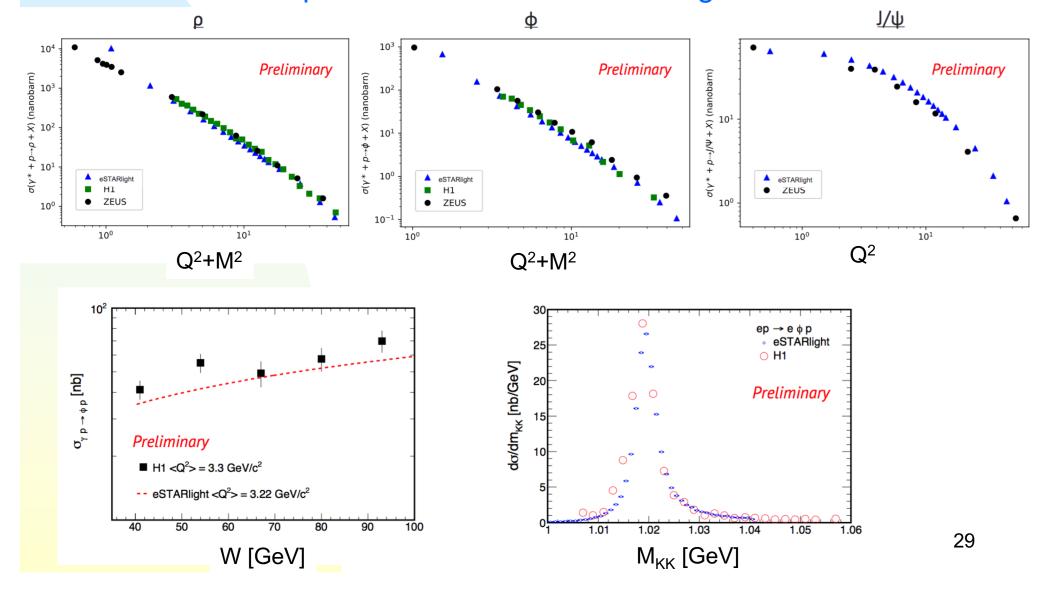

- $n=c_1+c_2(Q^2+M_V^2)$
- Pomeron & Reggeon (meson) exchange


Meson	c_1	$c_2 (10^{-2} \text{GeV}^{-2})$
ρ	2.09 ± 0.10	0.73 ± 0.18
ϕ	2.15 ± 0.17	0.74 ± 0.46
J/ψ	2.36 ± 0.20	0.29 ± 0.43

- ◆ Reggeon exchange matters at an EIC
- Q² dependence included via a power-law
 - Data on power n is not available for all mesons; we use the 'closest' meson
- σ_{γp} parameterized from HERA data
 - Pomeron exchange + Reggeon exchange
- More accurate parameterization used for heavy mesons, to better model near-threshold production

Vector meson decays

- Vector mesons retain the spin of the incident photon
- For Q² -> 0, s-channel helicity conservation means that the vector mesons are transversely polarized to the beam direction
 - ◆ As Q² rises, longitudinal polarization rises
- The Q² dependence of the transverse:longitudinal polarization ratio is not well known
- Parameterize HERA data in terms of spin-matrix elements:
- Only known for some mesons; use most 'similar' meson where needed



$$R_v = \frac{1}{\epsilon} \frac{r_{00}^{04}}{1 - r_{00}^{04}}$$

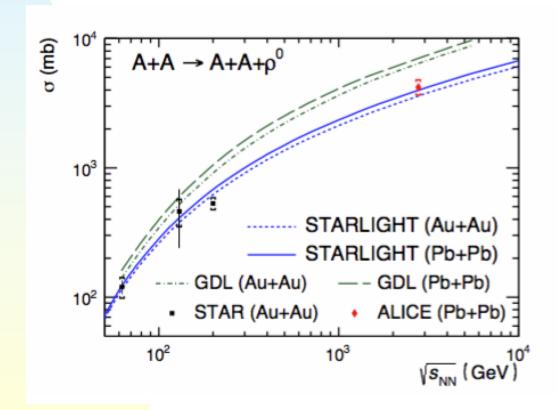
Comparison with HERA data

HERA shows γ^* p cross-sections

- $\sigma_{\gamma p} = \frac{\int dE_{\gamma} \int dQ^2 \frac{d^2 N}{dE_{\gamma} d(Q^2)} \sigma_{\gamma p}(E_{\gamma}, Q^2)}{\int dE_{\gamma} \int dQ^2 \frac{d^2 N}{dE_{\gamma} d(Q^2)}}$
- Remove the photon flux from the eSTARlight calculations

From γp to γA

With a quantum Glauber calculation, generalized vector meson dominance and the optical theorem:


$$\sigma_{tot}(VA) = \int d^2b \left[2 \cdot \left(1 - e^{-\sigma_{tot}(Vp)T_{AA}(b)/2} \right) \right]$$

$$\sigma(\gamma A \to VA) = \left. \frac{d\sigma(\gamma A \to VA)}{dt} \right|_{t=0} \int_{t_{min}}^{\infty} dt |F(t)|^2$$

- For heavy mesons (small dipoles), dσ/dt|_{t=0} ~ A²
- For the ρ^0 (smallish dipoles), $d\sigma/dt|_{t=0} \sim A^{4/3}$

Glauber calculations

- quantum Glauber calculation does not match STAR and ALICE UPC data; a classical Glauber does well.
 - Can add a correction for nuclear inelastic shadowing
 - eSTARlight currently allows classical Glauber as an option

ALICE, JHEP 1509, 095 (2015). L. Frankfurt et al. Phys. Lett. **B752**, 51 (2018)

EIC parameters

The calculations that follow use:

Accelerator	Collision	Electron	Heavy Ion
	System	Energy	Energy
eRHIC [21]	ep	$18 \; \mathrm{GeV}$	275 GeV
-	eA	$18 \; \mathrm{GeV}$	100 GeV/A
JLEIC [22]	ep	$10 \; \mathrm{GeV}$	$100 \; \mathrm{GeV}$
-	eA	$10 \; \mathrm{GeV}$	40 GeV/A
LHeC [23]	ep	60 GeV	7 TeV
_	eA	60 GeV	2.8 TeV/A
HERA	ep	$27.5~\mathrm{GeV}$	$920~{\rm GeV}$

Rates at EICs

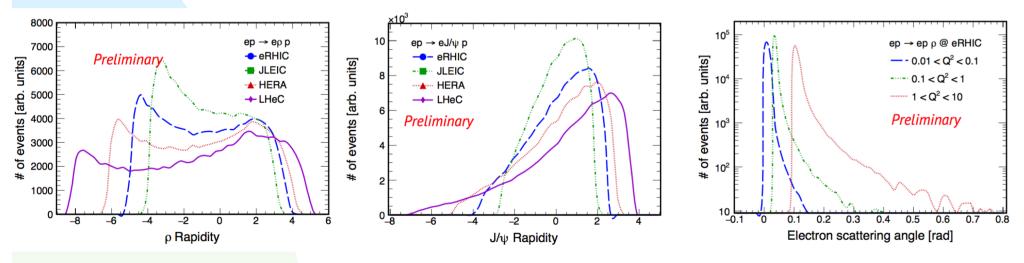
Assumed integrated luminosity 10 fb⁻¹/A

		Photo-production (Q ² < 1 GeV ²)				Electro-production ($Q^2 > 1 \text{ GeV}^2$)					
		ρ	ф	J/ψ	ψ'	Υ	ρ	ф	J/ψ	ψ'	Υ
eRHIC	ер	50 G	2.3 G	85 M	14 M	140 K	140 M	17 M	5.7 M	1.2 M	24 K
	eAu	44 G	2.8 G	100 M	16 M	60 K	37 M	<i>5.6</i> M	3.9 M	960 K	10 K
JLEIC	ер	37 G	1.6 G	39 M	6.0 M	43 K	100 M	12 M	2.7 M	550 K	7.9 K
	ePb	28 G	1.6 G	28 M	3.9 M	-	22 M	3.2 M	1.2 M	250 K	-
LHeC	ер	100 G	5.6 G	470 M	78 M	1.2 M	260 M	37 M	29 M	6.3 M	180 K
	ePb	110 G	8.2 G	720 M	140 M	2.0 M	100 M	16 M	27 M	7.2 M	250 K

Photoproduction

- ♦ High rates (>10⁹/year) for light mesons
- ◆ Good rates (>10⁶/year) for ccbar
- ◆ Usable rates for Upsilon

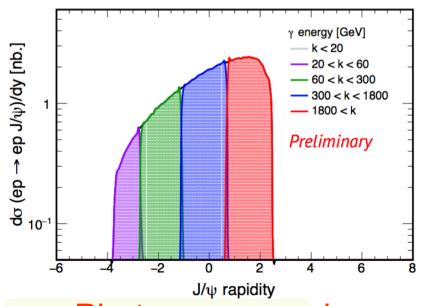
Electroproduction

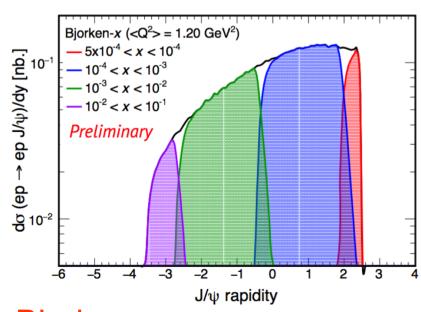

◆ Rates from ~<1% of photoproduction (light mesons), rising to 15% of photoproduction rates for the Upsilon</p>

Implication for physics program

- Can measure rates and d_σ/dy for all mesons, in at least a couple of Q² bins
- Tomographic studies should be possible for all light mesons and the J/ψ
- Good data for spin-dependence studies
- ψ(3770), ψ(4040) should be accessible, even after accounting for small branching ratios to specific final states
- A host of ρ' , ω' , and ϕ' , etc. states should be accessible
 - ◆ For meson spectroscopy, and to probe nucleons with different types of dipoles
- One could also look for exotica, and/or study rare light vector meson decays

Rapidity and Angular distributions

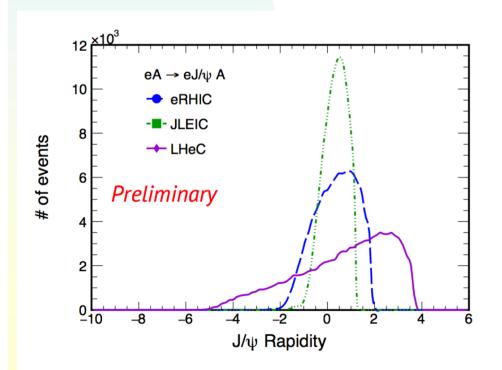

- Vector meson production over a wide rapidity range
 - N. b. unscaled distributions here

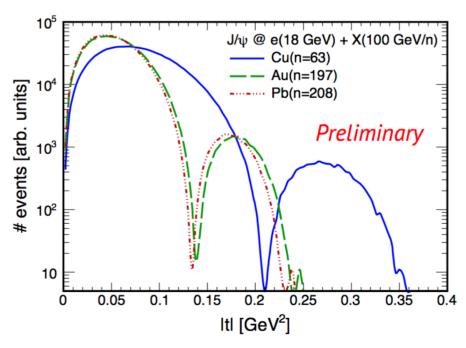


- ρ⁰ 'double peak' is due to Reggeon exchange (near threshold)
 and Pomeron exchange at large k/rapidity
- If pure Pomeron exchange is important need to go to large rapidity, or use φ or J/ψ, which are not produced via Reggeon exchange
- Electrons scattering angle is small (no surprise)

ep production vs. photon energy, Bjorken-x

- Photon energy maps into rapidity
 - For photoproduction, $k = M_V/2 \ln(y)$
 - ◆ Electroproduction shifts this slightly to the right

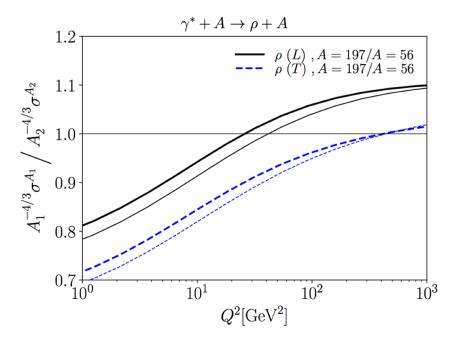




- Photon energy also maps onto Bjorken-x
- For maximum energy/Bjorken-x reach, need to detect vector mesons forward, with y ~ 2.5
- Near threshold, production is at large negative rapidity
 - ◆ Could shift to mid-rapidity by lowering beam energy

Production in eA

- Smaller γ-nucleon center of mass energy
 - Narrower rapidity range
- Lower Pomeron p₇ -> production is more central
- Expect clean diffractive minima
 - Unlike in UPCs, photon momentum can be removed

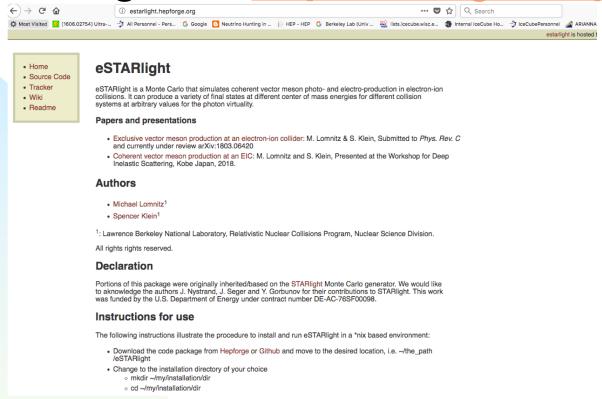


Cross-section vs. A & Q²: shadowing

- Without shadowing (i. e. for small dipoles), the cross-section scales as A^{4/3}
 - ◆ A² for forward scattering cross-section, A -2/3 for phase space
 - With shadowing, the growth in σ with A is smaller
- eSTARlight reproduces this well


eSTARlight 1.1 Preliminary 0.6 Q² [GeV²]

Mantysaari & Venugopalan


Final state particle distributions

- The vector meson daughter particles generally follow the rapidity distribution of their vector meson parents
- The final state matters: VM -> spin 0 spin (e. g. $\pi\pi$) has a very different angular distribution from VM -> spin ½ spin ½
 - ◆ Clebsch Gordon coefficients

- Large detector acceptance is key to high acceptance.
 - ◆ Otherwise, we waste beam

eSTARlight at: http://starlight.hepforge.net

Straightforward C++ code

- ◆ Optional inclusion of PYTHIA8 (for complex decays) and DPMJET3 for arbitrary eA interactions (w/Q²=0 for DPMJET)
- Easy to download and install
- If you need a hepforge account, please request one
- Please try it, and provide feedback

Future eSTARlight plans

- Additional mesons
- Charge exchange reactions γp->X⁺n
- Exotica?
- We welcome interested parties as co-developers
 - ◆ Spin effects?
 - ◆ GPDs?

Conclusions

- UPCs at hadron colliders and an EIC are complementary. UPCs have a larger photon energy/Bjorken-x, but lack good control of Q²
- The EIC will also offer the luminosity to collect enormous data samples dσ_{coheren}/dp_t², to study the effective shape of the nucleus, as a function of Q2
- STAR has made a preliminary study of shape changes with varying Q2, using dipion $M_{\pi\pi}$ to select events with different dipole size
- We have developed the eSTARlight Monte Carlo event generator which simulates production of vector mesons at an EIC
 - ♦ It covers arbitrary ranges of Q²
 - ◆ Initial runs show the importance of a wide detector acceptance.
 Forward acceptance is needed to probe the highest energy photons
- The eSTARlight code is available on hepforge. Please try it.
- We welcome both feedback and co-development efforts to add features to the code.